
By	Heidi	Adkisson

This	summer,	a	blog	post	“Safari	is	the	new	IE”	generated	discussion	and	some	measure	of	angst	about	the	future	of	web-based	applications.
Specifically,	the	author	was	frustrated	by	what	he	saw	as	Apple’s	reluctance	to	support	the	latest	web	technology	in	Safari.	Why	would	Apple
seemingly	limit	what	could	be	developed	for	the	browser?	In	theory,	to	push	developers	towards	developing	native	iOS	apps.	Thus,	yet	another	shot
was	fired	in	the	web	app	vs.	native	app	discussion.

Which	approach	(web	vs.	native)	is	optimal	is	not	always	clear—and	in	fact	the	distinction	is	not	even	black	and	white	because	many	so-called
native	apps	have	significant	web-based	components.

Given	the	recent	discussion	I	thought	it	was	a	good	time	to	review	the	platform	possibilities	and	when	they	might	make	the	most	sense.	First,	let’s
review	the	three	basic	options:

Native	Applications
Web	Applications
Hybrid	Applications

Native	applications
Native	applications	are	written	for	a	specific	hardware	platform	using	a	programming	language	specific	to	that	platform	(for	example	Objective-C
for	iOS/Mac;	Java	for	Android,	C#	for	Windows).	This	means	you	need	to	develop	a	separate	version	of	your	application	for	each	platform.	Native
applications	have	the	advantage,	however,	of	(usually)	better	performance	and	access	to	device-level	features	such	as	the	camera	and	GPS.	They
also	work	when	the	user	is	off-line.

A	nuance	with	native	apps	is	the	concept	of	universal	apps—apps	designed	to	work	on	a	specific	platform	(e.g.	iOS	or	Windows	10)	but	work	across
all	device	types	on	that	platform.	Apple	has	made	a	big	push	towards	universal	iOS	apps	that	work	across	its	various	iPhones	and	iPads;	Microsoft
is	doing	the	same	with	Windows	10	so	that	a	single	app	can	work	across	desktop,	tablet,	and	phone	devices.

There	are	also	tools	that	let	you	code	for	one	platform	and	port	the	code	to	work	on	another	platform.	This	still	requires	some	additional	coding,	but
it’s	less	effort	than	developing	two	entirely	separate	apps.	Notably,	Microsoft	provides	an	iOS-to-Windows	10	port	in	order	to	build	out	more	apps
for	that	platform	(which	have	been	lacking).

Web	apps
In	the	web	app	model	you	create	your	application	using	HTML/CSS,	which	can	(in	theory)	run	on	any	device	with	a	web	browser.

You	develop	and	maintain	a	single	code	base.	However,	creating	the	right	experience	across	a	range	of	device	types	requires	designing	and	coding
responsively—additional	effort	to	make	sure	the	code	works	well	across	different	form	factors	and	browser	types.	Responsive	design	is	pretty	much
de	rigueur	for	websites	(Starbucks.com	is	an	exemplar	here),	but	web	applications	can	also	be	implemented	using	responsive	design.

The	modern	way	of	developing	web	apps	is	to	have	much	of	the	functionality	run	on	the	client	side	(minimizing	round	trips	to	the	server),	most
commonly	using	JavaScript.	However,	this	client-side	code	adds	latency	because	the	browsers	need	to	compile	JavaScript	when	loading	the	page.
Thus,	web	apps	can	feel	more	sluggish	than	their	native	counterparts.

Hybrid	apps
On	mobile	in	particular,	apps	that	would	seem	to	be	native	(because	you	downloaded	and	installed	them	on	your	device)	are	in	reality	hybrid	apps.
These	are	apps	that	have	some	functions	written	natively	while	others	functions	are	written	in	HTML	that	is	rendered	within	the	app	(rather	than	in
a	separate	browser).	Many	e-commerce	mobile	apps	are	hybrid	apps,	with	the	shopping	sections	written	in	HTML	but	other	functions,	such	as	those
requiring	location	awareness,	written	natively.

Next,	let’s	look	at	some	platform	strategies	and	when	they	might	make	the	most	sense—for	developer	and	user	alike.

https://blinkux.com/team-member/heidi-adkisson
https://nolanlawson.com/2015/06/30/safari-is-the-new-ie/
https://www.starbucks.com/


Desktop	only:	Native	application
Targeting	the	desktop	with	a	native	application:	this	is	the	historical	bread-and-butter	of	application	development.

Now	this	strategy	is	typically	found	in	three	main	situations:

Proprietary	line-of-business	applications	developed	internally	by	a	company	(such	as	an	application	that	supports	a	particular	business
workflow)
B-to-B	applications	particularly	enterprise	applications	such	as	ERP	(Enterprise	Resource	Planning)	systems
B-to-C	applications	with	specialized	functionality	such	as	graphics	packages

This	strategy	can	make	sense	where	there	is	truly	no	need	for	a	mobile	experience—or	where	high	security	requirements	prevent	a	mobile
experience.	However,	as	more	mobile	devices	find	their	way	into	the	workplace	there	is	pressure	even	with	traditional	line-of-business	applications
for	a	mobile	experience.	People,	particularly	managers,	want	mobile	access	to	data	and	functionality	locked	in	these	platform-specific	systems.	It’s
created	pressure	to	move	these	systems	to	a	browser-based	experience	accessible	to	a	range	of	device	types.	Even	when	mobile	isn’t	a	driver,	the
move	away	from	a	native	app	allows	for	more	centralized	management	of	the	application	including	the	deployment	of	updates.

Desktop	only:	Web	application
Targeting	a	web	application	for	the	desktop	only	means	that	you	don’t	have	to	develop	responsively—and	you	otherwise	still	get	the	deployment
advantages	the	web	apps	bring.	In	some	cases,	mostly	with	decidedly	non-mobile	line-of-business	applications,	a	single	browser	type	can	be
targeted,	which	further	streamlines	development	and	maintenance.

There	is	a	bit	of	history,	however,	with	targeting	a	specific	browser.	Some	early	web	applications	were	IE-specific	and	required	Active	X	controls
(browser	plug-ins)—tying	the	developer’s	fate	to	this	Microsoft	technology.	It	was	a	decision	many	developers	lived	to	regret	as	IE	faded	in
popularity	and	Active	X	was	clearly	not	the	direction	of	the	modern	web.

Mobile	only
Contrasting	with	the	two	strategies	above	is	the	mobile-only	approach.	Some	experiences	are	inherently	mobile.	Instagram	out	of	the	starting
blocks	went	with	a	mobile-only	strategy—and	for	some	time	it	was	only	offered	on	a	single	platform	(iOS).	JetBlue	recently	announced	that	their
aircraft	mechanics	would	be	using	iPad	minis	for	their	maintenance	work.

In	most	instances,	mobile-only	experiences	benefit	from	being	native	applications.

It	is	certainly	possible	to	do	mobile-only	with	a	web	app.	However,	there	are	more	technical	limitations	in	terms	of	performance,	functionality,	and
data	storage.	An	intermediate	approach	is	the	hybrid	app,	which	leverages	web	components	but	can	still	provide	native	functionality.

The	reality	is	that	in	most	situations	there	is	a	requirement	for	an	app	to	work	across	a	range	of	devices	and	platforms.

In	this	case,	there	are	three	main	options:

A	Suite	of	Native	Apps
A	Fully	Responsive	Web	App
A	Web	App	with	Companion	Native	Mobile	App

A	suite	of	native	apps
Developing	a	suite	of	fully	native	apps	is	the	most	costly	strategy	from	a	development	standpoint.	But	a	fully	native	app	in	most	circumstances	still
provides	a	superior	user	experience.	Apps	representing	this	strategy	include	Evernote,	1Password,	and	Drop	Box.	These	are	all	designed	to	be
“available	anywhere”	experiences—data	is	synced	between	devices	via	the	cloud.	From	an	experience	standpoint	cloud	syncing	can	seem	almost
magical—and	it’s	hard	to	beat	the	performance	of	having	data	right	on	your	device.

A	variant	of	a	“suite	of	natives”	strategy	is	developing	a	suite	of	hybrid	apps.	In	this	approach	you	get	the	benefits	of	app	store	distribution	and
access	to	device-level	functions,	but	the	development	among	apps	can	be	streamlined	because	they	can	share	web-based	components.

Native	apps	require,	in	many	instances,	the	user	to	initiate	upgrades.	This	allows	the	user	to	upgrade	at	his	or	her	own	pace,	but	can	also	result	in
laggards	running	outdated	versions.

A	fully	responsive	web	app
The	frustration	expressed	in	“Safari	is	the	New	IE”	points	to	a	current	constraint	with	web	app	development.	Depending	upon	what	your	app	needs
to	do	it	can	be	difficult	achieving	parity	with	the	native	experience.	Fully	responsive	design	requires	that	the	application	behaves	in	a	way	that
doesn’t	degrade	the	experience	across	the	range	of	device	types.	The	“mobile	first”	methodology	was	intended	to	address	the	challenge	of
designing	responsively—specifically	to	mitigate	the	risk	that	the	desktop	experience	would	simply	be	squeezed	into	a	mobile	form	factor.	However,
mobile	first	may	not	make	sense	in	all	contexts,	particularly	when	the	mobile	experience	is	truly	secondary.	Responsive	design	is	inherently	a
balancing	act.

For	commercial	software,	going	with	a	pure	web	app	approach	also	means	foregoing	app	store	distribution;	lacking	app	store	visibility	can	make	it
more	difficult	for	users	to	discover	your	app.	The	flip	side,	however,	of	bypassing	the	app	store	is	that	you	don’t	have	to	submit	you	app	to	the
store’s	approval	process,	you	don’t	have	to	pay	a	percentage	of	the	purchase	price	to	the	store,	and	you	have	the	potential	to	have	more	direct
communication	with	your	customers.	Another	plus—applicable	to	both	commercial	and	internally-developed	web	apps—is	that	you	have	a	single
code	base	to	manage	and	you	don’t	need	to	hire	a	staff	of	developers	with	platform-specific	coding	skills.

A	web	app	with	companion	native	app	for	mobile
Creating	a	web	app—with	some	degree	of	responsive	behavior—along	with	a	companion	native	mobile	app	is	a	common	strategy.	Native	mobile
apps	give	you	the	opportunity	to	leverage	features	such	as	the	camera	and	location-awareness—features	that	aren’t	suited	to	the	desktop.	You’ve

https://mashable.com/archive/mobile-only-social-networks
https://aviationweek.com/mro/jetblue-adopts-ipads-line-maintenance
https://nolanlawson.com/2015/06/30/safari-is-the-new-ie/
https://www.intercom.com/blog/why-mobile-first-may-already-be-outdated


likely	experienced	this	strategy	with	online	banking.	You	might	review	your	account	activity	on	the	desktop.	Then,	need	to	deposit	a	check?	Whip
out	the	app,	take	a	photo	of	the	check,	and	voilà.

The	wrap-up
This	has	been	a	decided	fly-by	on	the	topic	of	platform	strategy—the	decision	ultimately	includes	other	nuances	not	covered	here.	A	good	start,
however,	is	always	the	user	experience.	What	are	the	likely	contexts	of	use?	What	devices	and	platforms	are	likely	to	be	used	in	that	context?	Are
some	tasks	inherently	more	suited	to	one	context	over	another?	How	could	uniquely	mobile	experiences	add	to	what	you	can	deliver?	And	of
course,	we	are	here	to	help	organizations	through	these	questions—just	give	us	a	ring.

Heidi	works	in	Interaction	Design	and	is	a	Partner	at	Blink.	She	divides	her	leisure	time	between	classical
music,	cooking,	and	the	Seattle	Mariners.

https://blinkux.com/contact

