
By	Heidi	Adkisson

In	the	year	2000,	there	were	two	neatly	divided	user	experience	worlds:	the	world	of	the	web	and	the	world	of	desktop	applications.

The	desktop	world	was	about	performing	work:	word	processing,	image	editing,	crunching	numbers	with	a	spreadsheet.	In	this	environment,
operating	system	vendors	(primarily	Microsoft	and	Apple)	worked	hard	to	enforce	standards	that	helped	create	a	more	uniform	user
experience	across	applications	created	by	third	parties.
The	web	experience	was	primarily	about	finding/sharing	information	or	completing	a	sales	transaction.	It	was	the	“wild	west”	-lacking	the
standards	and	conventions	of	the	desktop	world.

Now	these	two	worlds	are	converging.	Desktop	applications	may	seamlessly	incorporate	content	from	the	Web	–	and	use	web	conventions	such	as
hyperlinks.	Web-based	applications	provide	functionality	previously	only	found	on	the	desktop.	As	these	two	worlds	converge,	new	types	of	usability
risks	emerge.

In	this	essay,	I	discuss	some	common	usability	risks	that	we’ve	seen	with	bringing	desktop-line	functionality	to	web	applications.

Risk	1:	Assuming	desktop	interactions	can	be	translated	directly	to	the
web
One	barrier	to	translating	familiar	interactions	from	the	desktop	to	the	web	is	the	different	expectations	users	bring	to	the	web.	Consider	the	case
of	one	client	who	created	a	web	application	by	putting	the	commands	(such	as	save,	edit,	and	delete)	in	fly-out	menus	at	the	top	of	the	page.	Their
logic	was	clear:	after	all,	many	sites	(such	as	Circuit	City)	use	fly-out	menus.	And	users	are	familiar	with	command	menus	because	the	approach	is
standard	in	most	desktop	applications.

The	problem	was	that	on	the	web,	users	associate	fly-out	menus	with	navigation.	They	expect	commands	to	appear	as	buttons	or	link	on	the	page.
In	this	particular	case,	users	were	clearly	frustrated	by	the	system	as	evidenced	by	the	high	volume	of	“how	do	I…?	calls”	received	by	client’s	call
center.	The	solution	here	was	to	use	a	“button	bar”	–	putting	key	commands	directly	on	the	page	as	buttons.	Less	frequently	used	commands	were
contained	within	a	“More	Actions”	menu.	This	is	an	approach	that	a	number	of	web-based	applications	have	adopted,	including	Gmail	and	Yahoo
Mail.

Dragging	and	dropping	is	an	interaction	that	more	web	applications	have	adopted.	However,	as	we	mention	in	our	2006	Staff	Picks	of	Usability
Issues,	our	studies	indicate	that	many	users	do	not	expect	drag-and-drop	to	be	available	on	the	web.	Drag-and-drop	can	also	be	quite	mouse-
intensive,	particularly	for	frequently-performed	tasks.	For	this	reason,	most	desktop	applications	provide	a	command-based	way	to	move	objects
from	one	location	to	another.	Where	possible,	we	recommend	the	same	approach	for	web-based	applications.

Risk	2:	The	return	of	interface	“mystery	meat”	–	this	time	for	commands
Many	early	Web	1.0	sites	were	built	by	graphic	designers,	who	placed	a	high	value	on	site	aesthetics,	sometimes	at	the	expense	of	site	usability.
One	technique	–	using	icon-only	navigation	schemes	that	revealed	text	labels	only	on	mouse-over	–	was	appropriately	derided	as	“mystery	meat
navigation.”

The	Web	2.0	design	aesthetic	–	with	its	emphasis	on	simplicity	–	has	spawned	a	related	technique	where	actions	for	an	item	on	the	page	are	only
revealed	on	rollover.	For	example,	early	versions	of	Live.com	only	displayed	Edit	and	Remove	actions	when	the	user	rolled	over	the	top	bar	of	the
module.

There	are	two	risks	with	this	interaction:	1)	discoverability	of	the	actions	available	2)	the	two	step	movement	that	is	required	(first	display	the	links,
then	click	on	the	desired	link).	Thankfully,	Microsoft	subsequently	decided	on	displaying	these	links	persistently	on	each	module—no	rollover
required.

This	is	not	to	say	that	actions	hidden	until	rollover	are	always	a	bad	idea.	As	with	dynamic	navigation	menus,	the	implementation	can	have	a	huge
impact	on	usability.	If	the	entire	object	is	“hot”	and	creates	a	large	target	area	for	displaying	the	actions,	discoverability	is	improved.

The	additional	benefit	of	displaying	actions	on	rollover	is	that	it	creates	a	clear	visual	relationship	between	an	object	and	its	actions	without
unnecessarily	cluttering	the	interface	by	persistently	showing	every	action	for	every	object.	37	Signals’	Backpack	ToDo	lists	provide	an	example	of
a	well-done	implementation.

https://blinkux.com/team-member/heidi-adkisson
https://blinkux.com/ideas/staff-picks-10-usability-favorites-2006


Risk	3:	Inadequate	transactional	feedback
With	increased	page-level	interaction,	another	key	factor	in	creating	a	usable	application	is	feedback.	On	the	web,	people	are	accustom	to	having	a
completed	function	take	them	to	a	different	page	in	response	-or	at	least	re-load	the	current	page.	From	a	user	experience	perspective	this	is	slow
and	clunky.	However,	people	have	become	accustom	to	this	and	may	miss	feedback	that	occurs	more	quickly.

It	is	important	that	feedback	be	clear	and	bold.	The	consequences	of	missed	feedback	are	potentially	high.	Where	feedback	isn’t	adequate	we’ve
seen	people	erroneously	conclude	that	“nothing	happened.”	This	leads	them	to	re-do	a	transaction	unnecessarily,	which	produces	the	same	unclear
outcome,	and	ultimately	leads	the	user	to	believe	that	the	system	isn’t	working.

Risk	4:	Where	desktop-like	interactivity	occurs	users	expect	desktop-
like	performance
An	important	aspect	of	making	dynamic	displays	usable	is	responsiveness.	Sluggish	performance	can	result	in	users	blowing	right	by	important
functionality.	Consider	Google	Suggests,	which	uses	type-ahead	functionality	to	streamline	search	term	entry.	Responsiveness	is	key	to	its
usefulness.	We’ve	seen	users	completely	miss	similar	functionality	because	the	performance	was	sluggish.	They	were	never	aware	the	feature	was
available	because	they	had	finished	their	query	before	the	entry	suggestions	displayed.

Scrolling	is	another	function	for	which	users	have	high	expectations.	For	example,	think	about	how	an	image	library	scrolls	in	the	desktop
environment,	so	that	the	images	are	visible	at	all	points	during	the	action.	This	is	critical	“way-finding”	feedback.	In	our	lab	we’ve	seen	web-based
scrolling	where	the	page	displays	lags	significantly	behind	the	scrolling	action.	Essentially,	this	lets	users	perform	functions	that	the	system	can’t
adequately	support.	It’s	very	frustrating	for	users	to	try	to	find	the	“sweet	spot”	-the	point	at	which	they	can	perform	the	task	as	quickly	as	possible
without	breaking	the	functionality.

Conclusions
When	designing	interactions	for	web	applications,	think	in	terms	of	how	you	can	make	a	function	require	less	time,	less	physical	effort,	and	less
cognitive	effort.	Of	course	you	should	always	be	thinking	this,	but	when	adding	interactivity	that	might	not	be	expected	on	the	web,	it’s	important
to	double-check	the	benefits	and	risks.

Finally,	don’t	discount	the	emotional	appeal	of	a	richer	experience.	Always	playing	it	safe	is	a	recipe	for	mediocrity.	If	you	feel	an	approach	is	risky,
make	sure	it	gets	on	the	“we	need	to	test	this	list.”


